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Abstract

Machine learning deals with the development of algorithms
for classification and prediction. However, these algorithms
have only in rare cases been used in political science. This
poster demonstrates the application of state-of-the-art ma-
chine learning techniques to the prediction of conflict. In
order to address the rare events problem, I use an ensem-
ble of classifiers built on subsets of the training data. These
subsets include all positive cases, and a random selection
of negative ones. Although I focus primarily on decision tree
learning, the proposed method can be used in conjunction
with different classification algorithms in order to improve
the prediction of conflict onset.

1. Why Machine Learning?

Prediction
One way to make quantitative conflict research more policy-
relevant is by providing risk assessments. However, stan-
dard regression models are often poor at predicting conflict
(Beck, King and Zeng, 2000; Ward and Bakke, 2005). Ma-
chine learning methods, on the other hand, are tailored to
prediction tasks.

Complex Processes
Conflict is the result of complex interdependencies of a mul-
titude of factors. The processes that bring about civil war
are likely to be nonlinear, interactive and context-dependent
(Beck, King and Zeng, 2000). Machine Learning methods
can deal with relationships of high complexity.

2. Machine Learning

What is Machine Learning?
Machine Learning is a subfield of Computer Science and
deals with the development of algorithms that improve their
performance with experience (Mitchell, 1997). A “super-
vised” machine learning task is equivalent to classification:
Given certain attributes of a learning instance, the algorithm
seeks to predict the correct class.

Evaluation of a Classifier

•Out-of-sample prediction: Separate training and test sets
•Maximize use of data by K-fold cross-validation
•Measures of predictive accuracy (for a two-class prob-

lem):
1. Precision (Proportion of correct positive predictions):

TP/(TP+FP)
2. Recall (Proportion of positive cases correctly classified

as positive): TP/(TP+FN)

3. Decision Trees
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Figure 1: Decision tree predicting onset (Yes/No) of civil
war, built on the Fearon and Laitin (2003) dataset.

Decision tree learning (Quinlan, 1986)
At each node, select the attribute A that maximizes the in-
formation gain g on the sample S:

g(S,A) = entropy(S)−
∑

v∈Values(A)

Sv

S
entropy(Sv)

The entropy is the impurity of a set of cases. Entropy func-
tion for a two-class problem (Mitchell, 1997):

entropy(S) = pY log2pY − pN log2pN

4. The Rare Events Problem

Predicting Conflict
When predicting conflict with machine learning algorithms,
we do not obtain useful classifiers because of the high pro-
portion of negative cases. For example, decision tree learn-
ers produce a degenerated tree with one leaf (No).

A Modified Bagging Procedure
Trees constructed on a balanced subsample (all positive
training cases, random selection of negative cases) dis-
play a more meaningful structure. However, since the tree
structure is dependent on the random selection of negative
cases, the tree does not perform well on the full sample. We
can repeat the sampling process many times (“Bagging”):
•Create a balanced sample with random selection from

the negative cases
• Build a decision tree on it

The predictions of the individual trees are aggregated by
majority vote (Breiman, 1996).
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Figure 2: Training and test phase of the ensemble classifi-
cation method. Black squares indicate the positive cases.

5. Results

Bagging and Decision Trees
Prediction task: Onset of civil war (Fearon and Laitin,
2003), Model 1. N=6610, 111 conflict onsets (1.68%).
All results are out-of-sample predictions (10-fold cross-
validation). Software: Weka machine learning package
(Witten and Frank, 2005) with RWeka interface.
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Figure 3: Results of decision tree classification with bag-
ging, for different numbers of bags. Error bars indicate +/-1
standard deviation across 20 random seeds.

Assessing the Impact of Individual Variables
Approach: Compare predictive performance of restricted
models (with single variables left out) to full model.
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Figure 4: Changes in precision and recall compared to the
full model, when leaving out the respective variable.

Different Proportions of Positive and Negative Cases in
a Bag
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Figure 5: Results of decision tree classification with bag-
ging, for different ratios of positive vs negative cases in
a bag. Darker shadings correspond to higher numbers of
bags.

Alternative Base Classifiers
The proposed methods can also be used in conjunction with
other classification algorithms.
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Figure 6: Precision and Recall for different classification al-
gorithms with bagging, for different numbers of bags.

6. Discussion

The proposed method makes machine learning algorithms
applicable to conflict prediction and can be used in conjunc-
tion with different base classifiers. However, the use of an
ensemble of classifiers makes the effect of individual vari-
ables more difficult to assess.
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